How Self-initiated Memorized Movements Become Automatic: A fMRI Study
نویسندگان
چکیده
We used functional magnetic resonance imaging (fMRI) and dual tasks to investigate the physiology of how movements become automatic. Normal subjects were asked to practice some self-initiated, self-paced, memorized sequential finger movements with different complexity until they could perform the tasks automatically. Automaticity was evaluated by having subjects perform a secondary task simultaneously with the sequential movements. Our secondary task was a letter counting task where subjects were asked to identify the number of times a target letter from the letter sequences was seen. Only the performances that achieved high accuracy in both single and dual tasks were considered automatic. The fMRI results before and after automaticity was achieved were compared. Our data showed that for both conditions, sequential movements activated similar brain regions. No additional activity was observed in the automatic condition. There was less activity in bilateral cerebellum, pre-SMA, cingulate cortex, left caudate nucleus, premotor cortex, parietal cortex, and prefrontal cortex during the automatic stage. These findings suggest that most of the motor network participates in executing automatic movements and that it become s more efficient as movements become more automatic. Our results do not provide evidence for any area to become more activated for automatic movements.
منابع مشابه
How self-initiated memorized movements become automatic: a functional MRI study.
We used functional magnetic resonance imaging (fMRI) and dual tasks to investigate the physiology of how movements become automatic. Normal subjects were asked to practice some self-initiated, self-paced, memorized sequential finger movements with different complexity until they could perform the tasks automatically. Automaticity was evaluated by having subjects perform a secondary task simulta...
متن کاملA functional MRI study of automatic movements in patients with Parkinson's disease.
Patients with Parkinson's disease have great difficulty performing learned movements automatically. The neural contribution to the problem has not been identified. In the current study, we used functional magnetic resonance imaging (fMRI) to investigate the underlying neural mechanisms of movement automaticity in Parkinson's disease patients. Fifteen patients with Parkinson's disease were recru...
متن کاملThe preparation and execution of self-initiated and externally-triggered movement: a study of event-related fMRI.
Studies of functional brain imaging in humans and single cell recordings in monkeys have generally shown preferential involvement of the medially located supplementary motor area (SMA) in self-initiated movement and the lateral premotor cortex in externally cued movement. Studies of event-related cortical potentials recorded during movement preparation, however, generally show increased cortica...
متن کاملAsymmetrical Effect of Levodopa on the Neural Activity of Motor Regions in PD
Parkinson's disease (PD) is a neurodegenerative illness often characterized by asymmetrical symptoms. However, the reason for this asymmetry and the cerebral correlates underlying symptom asymmetry are still not well understood. Furthermore, the effects of levodopa on the cerebral correlates of disease asymmetry have not been investigated. In this study, right-handed PD patients performed self-...
متن کاملSlow Accumulations of Neural Activities in Multiple Cortical Regions Precede Self-Initiation of Movement: An Event-Related fMRI Study
The neural processes underlying self-initiated behavior (behavior that is initiated without an external stimulus trigger) are not well understood. This event-related fMRI study investigated the neural origins of self-initiated behaviors in humans, by identifying brain regions that increased in neural activities several seconds prior to self-initiated movements. Subjects performed a hand graspin...
متن کامل